Difference between revisions of "712 - Bridge Rehabilitation, Concrete"

From MediaWiki
Jump to navigation Jump to search
Line 149: Line 149:
  
 
'''p.''' Records - (Insert company name) will maintain a copy of all manifests for three years and make them available to MDEQ upon request.
 
'''p.''' Records - (Insert company name) will maintain a copy of all manifests for three years and make them available to MDEQ upon request.
 +
 +
'''Hydrodemolition Project Checklist''' – see below for a sample. hydrodemolition project pH Control Plan checklist.
  
  

Revision as of 09:49, 19 May 2014

712
Bridge Rehabilitation - Concrete
2012 STANDARD SPECIFICATIONS FOR CONSTRUCTION - SECTION 712


GENERAL

Rehabilitation of bridge concrete includes deck removal, deck patching, post-installed adhesive and mechanical anchors, mechanical reinforcement splicing, rigid overlays, epoxy overlays, substructure patching, joint repair or replacement, crack sealing, crack injection, grouting, and carbon fiber wrapping. These rehabilitation techniques, or any combination of them, are used to improve the existing condition, and increase the service of the bridge. The MDOT Project Scoping Manual offers excellent guidance on the method of determining the rehabilitation techniques.

Weather Limitations

See Section 712 of the Standard Specifications for Construction for Cold and Hot Weather Limitations.

[top of page]


MATERIALS

-Reserved-

[top of page]


CONSTRUCTION

Ridgid Overlays

Rigid overlays are used in bridge rehabilitation to improve the top surface of the bridge deck which is showing signs of deterioration. Rigid overlays are a densified cementitious layer meant to waterproof and protect the existing bridge deck while improving the wearing course and ride quality of the structure. Shallow overlays are typically scoped for structures that are showing signs of deterioration of the top and bottom of the deck, yet not to the extent to warrant a deck replacement and involve removing concrete to the top of the top mat of reinforcement. Deep overlays are typically scoped for structures that have deterioration in the top of the deck with a sound underside and involve removing concrete to below the top mat of deck reinforcement. Preparation for placement of rigid overlays typically involves an initial pass with a scarifier followed by hydrodemolition to the required design depth. Typical rigid overlay materials are LMC, SFMC and Grade DM concrete.

Deck Removal and Deck Patching

Deck patching is recommended when less than 10 percent of the bridge deck area is indicative of spalling or delaminations, and is typically not shown on the plans, but rather quantified in contract pay items. Deck patching involves sounding and marking areas of concrete removal, saw cutting the boundaries, hand chipping shallow or hand chipping deep, patch preparation and placing of the new concrete. Deck patching must be conducted in accordance with section 712 of the Standard Specifications for Construction.

  • Saw Cutting

The Engineer will determine the areas to be patched in accordance with the plans. Ensure the saw cut perimeter extends to sound concrete to ensure all delaminated concrete is removed. Patches spaced at less than 1 foot must be combined into larger patches. After the locations to be patched are marked the perimeter of the patch should be saw cut to a minimum depth as shown on the plans, typically 1”. Extend saw cuts 1” beyond intersecting lines. Ensure the saw cutting operation does not cut the deck reinforcement. The saw cutting should be performed to “square” the patch as best as practicable. A square or rectangular patch is less susceptible to shrinkage cracking than patches with sharp angles or many corners. See Figure 712.1 for an example of an acceptable saw cut and chipping operation.

Saw cutting is also used during deck removal operations to free the deck from the shear connectors in the top flange of the beams. The beam locations should be marked on the top of the deck. When saw cutting over steel or prestressed concrete I-beams, the depth of saw cutting must be no greater than 90 percent of the deck thickness. Do not saw cut over spread box beams or 1800 girders, rather saw cut in between beams and use a pneumatic hammer for concrete removal over tops of beams. Carefully inspect the beams or girders after deck removal, and notify the Engineer of any saw cuts in the top flanges. Saw cuts equal to or less than 1/32 inch deep in steel beams must be repaired by grinding, to a surface roughness no greater than 125 micro-inches per inch rms, and tapering to the original surface using a 1:10 slope. Saw cuts in excess of 1/32 inch deep in steel beams require a welded repair to be submitted to the Engineer for approval. Ensure all welds are in accordance with subsection 707.03.D.8 of the Standard Specifications for Construction and that adequate notice is provided to allow the Engineer to witness the repair work. Inspect and test all saw cut repairs (including grinding repairs) using ultrasonic testing in accordance with subsection 707.03.D.8.c of the Standard Specifications for Construction. This should be done at no additional cost to the Department.

  • Hand Chipping

Hand chipping of bridge decks must be done in accordance with section 712.03.F.1 of the Standard Specifications for Construction. Hand chipping is conducted with pneumatic hammers, air chisels, scarifying machines, milling machines, or other methods approved by the Engineer. Machine mounted hydraulic or pneumatic equipment may be used for deck patching on structures with steel beams, or on prestressed concrete beam structures, between the beams only. All patches that lie directly above prestressed beam top flanges must be chipped with 60 lbs or less hammers to avoid damaging the beams. For structures consisting of adjacent box beams, spread box beams or 1800 girders, machine mounted equipment is not permitted for deck patch chipping. Ensure all unsound concrete is removed as part of the chipping operation. The chipped area is to be blast cleaned prior to forming. Shallow hand chipping involves chipping concrete from the deck surface to the mid-point of the top mat of steel (approximately 1.5”). This type of patch will utilize a Latex Modified Concrete (LMC) for repair. The LMC does not rely on the mechanical bond around the reinforcing steel like other concrete mixes, rather bond is generated by horizontal friction between the proposed and existing surfaces. Deep hand chipping involves chipping to ¾” below top mat or more (approximately 4” to full depth). This type of patch may be repaired with the LMC; however the special provision for Bridge Deck Surface Repair (7 sack) mix or Grade D may be substituted for the LMC with the Engineer’s approval. For hand chipping concrete other than deck concrete, the concrete should be removed with air hammers or other methods as approved by the Engineer. The perimeters of repairs are to be saw cut to an edge depth of ½ inch, and the concrete is to be removed to a depth of 3 inches measured from the edge of the concrete surface. Ensure concrete is removed to at least ¾ inch below exposed reinforcing steel.

  • Patch Preperation

The patch must be free from unsound concrete, loose material and debris. Inspect the edges of the patch for indications that the delaminated area extended beyond the proposed patch area. If necessary extend the size of the patch. See Figure 712.2 for an example of delaminated areas within a patch, meaning the patch should be extended.

Any exposed structural steel (beam tops, diaphragms, etc.) must be cleaned the SSPC-SP3, Power Tool Cleaning standards.

[top of page]


Scarifying Existing Deck

After closing the bridge to traffic all asphalt overlays and/or patches must be removed prior to beginning of scarifying. The entire deck to receive the hydrodemolition should be scarified to a depth of ¼ inch. Controlling the depth of the scarifying will facilitate consistent hydrodemolition depth and reduce the chances of impacting deck reinforcement. For part-width construction, no scarifying or chipping will be conducted within 6 feet of newly cast overlays until the newly cast material has cured for at least 48 hours. Areas that are unattainable by the scarifying equipment must be hand chipped to the required depth of scarify (¼ inch).

Scarifying is necessary to roughen the deck surface and allow for acceptance of the hydrodemolition. However, scarifying alone followed by an overlay is not a standard practice. Scarifying may introduce cracks to the deck which may result in premature failure of the newly cast rigid overlay. In the event that hydrodemolition is not feasible after scarifying, some level of additional preparation such as power washing or shotblasting is necessary prior to placement of the rigid overlay.

[top of page]


Hydrodemolition

Hydrodemolition is used after scarifying to remove unsound concrete to reinforcing steel without damaging the steel and to eliminate any micro cracks that may have been caused during scarifying. The ¼ inch scarify is necessary to promote an efficient hydrodemolition and to remove significantly unsound areas of concrete prior to the first hydro pass. The hydrodemolition equipment must be calibrated to the desired depth as indicated on the plans prior to the first pass. After the first pass has been completed, the Engineer will mark any unsound areas remaining in the deck concrete. These areas may be removed with a second hydrodemolition pass or by hand chipping with pneumatic chipping hammers (60 lbs or less). Effort must be made not to damage the exposed reinforcing steel during concrete removal.

If the depth of removed concrete meets or exceeds 3”, the Engineer will not allow heavy equipment, including vacuum and concrete trucks, on the prepared deck surface.


1. Calibration of Hydrodemolition Equipment:

  • Find an area of good concrete approximately 30 square feet.
  • Hydro-demolish approximately 10 square feet.
  • Using a straightedge, set it across the area, measure to the

mortar line, and adjust depth as necessary.

  • After the proper depth is obtained, the hydro-demolisher is ready

for production cutting.

  • After the machine has moved approximately 20 linear feet,

re-check the cut depth and make any necessary adjustments.

  • Now production can continue with spot checking the depth.
  • Record the settings (water pressure, cutting head speed and

forward advancement) on the IDR for future reference.

  • During the first pass, the loose material must be cleaned up.
  • Runoff water is not permitted to leave the deck until it has been

filtered clean.

  • Allow the deck to air dry for one day before sounding the

concrete for a second pass.

  • Areas of exposed reinforcement and deep removal should be

sounded for good concrete. Where reinforcement is debonded, the concrete will be chipped approximately one inch below the steel.

  • Runoff water, filtered or unfiltered, shall not be allowed to enter

storm sewers, bridge drainage downspouts or bridge approach downspouts, nor be discharged into surface water floodplains or wetlands.

2. Hydrodemolition Water Discharge The hydrodemolition contractor is required to obtain a Certificate of Coverage (COC) under the Groundwater Discharge General Permit for hydrodemolition process water prior to beginning hydrodemolition work. The COC is an annual requirement, regardless of the number and location of hydrodemolition projects a contractor works on.

The hydrodemolition contractor is responsible for submitting the application and paying the fee when invoiced by the MDEQ. The coverage under the general permit is effective at the time the contractor receives the COC from the MDEQ. The COC will indicate the period of coverage. The project engineer should verify that the coverage will be in effect for the entire period of time that hydrodemolition work will take place on a given project. A copy of the COC should be provided by the hydrodemolition contractor and placed in the project file. 3. Sample Hydrodemolition pH Control Plan

a. Description (Insert company name) staff shall sample, test, monitor, manage, and neutralize, if necessary, the hydrodemolition runoff water prior to discharge from the bridge deck. In areas with enclosed storm drainage systems or in areas where discharging is otherwise not permitted, (Insert company name) will collect, haul, and dispose of the hydrodemolition runoff water.

b. Construction - (Insert company name) will perform this work as specified in the Standard Specifications for Construction and the contract documents. Discharged hydrodemolition runoff water will be filtered with a minimum of three peastone filter dams. The peastone dams will be maintained during the entire hydrodemolition and rinsing operations. Dams will not be constructed from millings of the scarified concrete or removed latex concrete. Remove millings prior to beginning the hydrodemolition process.

(Insert company name) will obtain an MDEQ Certificate of Coverage form and conform to the Groundwater Discharge General Permit.

c. pH Control Plan - (Insert company name) staff shall sample, test, monitor, manage, and, if necessary, neutralize the hydrodemolition runoff water prior to discharge and/or disposal. The plan manager will be (Insert name of plan manager).

d. Sampling and Testing - The hydrodemolition runoff water produced by the hydrodemolition equipment will be sampled and tested immediately to determine whether it falls within the nonhazardous range (greater than 2 and less than 12.5) by (Insert tester’s name or names). A daily calibrated (Insert pH meter model and name) will be utilized and calibrated by (Insert tester’s name or names).

On this hydrodemolition project, a minimum of four independent hydrodemolition runoff water samples will be taken per day for each structure and recorded. Additional sampling may be taken depending on the volume of runoff generated, consistency of pH, and area of the bridge deck. Sampling will be spaced evenly throughout the work day although the frequency may be adjusted depending on change in the hours of operation. The samples will be tested and split into laboratory samples. Four hydrodemolition runoff samples will be tested by an MDEQ certified laboratory. The MDEQ certified laboratory will be (Insert name of testing laboratory) and the laboratory contact person is (Insert contact name) and can be reached at (Insert testing laboratory phone number). The laboratory will check and verify the pH and provide daily a written report to be forwarded to the resident/delivery engineer. If the laboratory tests are not consistent with the field results, (Insert company name) will (Insert proposed action, options include recalibrating pH meter, changing meters, stoppage of work, neutralizing, etc)

Test results will be recorded on the hydrodemolition log.

e. Monitoring - (Insert company name) will take action to ensure the pH is above 2 and below 12.5 prior to discharge and disposal by (List proposed actions such as pre-treatment, treatment during hydrodemolition, or post treatment options) (Insert company name) will treat the runoff water with (Insert product name or names) in order to keep the runoff water below a pH of 12.5. The (Insert product name or names) will be mixed (Insert location of mixing) prior to discharge and disposalf. pH Adjustment - (Insert company name) will treat the runoff water with (Insert product name or names) in order to keep the pH of the hydrodemolition runoff water above 2 and below a pH of 12.5. The (Insert product name or names) will be mixed (Insert location of mixing such as tank, gondola, and tanker truck) prior to discharge and disposal. A copy of the material safety and data sheet (MSDS) and a product data sheet will be furnished to the engineer prior to neutralizing.

f. Managing - (Insert company name) will manage the hydrodemolition waste runoff toprevent release of a hazardous waste and will adjust the pH when necessary as indicated in the pH adjustment

g. Collecting and Hauling - (Insert company name) will collect the hydrodemolition runoff water and the hauling will be based on the following:

h. Hazardous Waste - If the hydrodemolition runoff water is hazardous and isn’t neutralized, then the runoff water will be transported by (Insert licensed hazardous waste transport company name) for disposal at (Insert licensed hazardous waste disposal company name)

i. Non-Hazardous Waste - If the hydrodemolition runoff water is nonhazardous, then the runoff water will be transported by (Insert licensed liquid industrial waste transport company name) for disposal at (Insert licensed liquid industrial disposal company name or public owned treatment works)

Copies of waste manifests forms will be forwarded to the engineer.

j. Generator and/or Transport Site Identification Number - (Insert company name) will either obtain a generator or site identification number from the MDEQ Waste and Hazardous Materials Division or use a licensed liquid industrial waste hauler to transport the hydrodemolition runoff water.

List the site identification number for each structure: (Insert Structure Location and Structure Name) is (Insert Site ID Number). (Insert licensed liquid industrial waste transport company name) will transport the hydrodemolition runoff water. (Insert company name) will contact the engineer to request a site identification number from MDEQ

k. Discharge - (Insert company name) will not discharge into any surface waters of the state, storm water drainage systems, or in areas where discharging is not permitted. (Insert company name) will coordinate the collecting, hauling, proper disposal of the hydrodemolition runoff water, and will obtain approval from the engineer for the discharge method and location prior to beginning the hydrodemolition operation. The discharge of the runoff water will only occur on MDOT right of way and will be distributed as evenly as possible. Discharge will be minimized via curb side culverts and downspouts. (Insert company name) will record hours of the hydrodemolition process and the volume of water discharged. Measures will be maintained for managing the runoff water by (Insert company name) in good working order.

l. Disposal of Hydrodemolition Runoff - (Insert company name)

m. Nonhazardous Runoff Water Disposal - (Insert company name) will collect the water. (Insert liquid industrial waste company name) will transport to (Insert disposal location, either a solid waste facility or licensed liquid industrial waste disposal facility).

(Insert company name) will forward copies of the manifests to the engineer.

n. Hazardous Runoff Water Disposal - (Insert company name) will collect the water. (Insert hazardous waste transport company name) will transport to (Insert hazardous waste disposal facility).

(Insert company name) will forward copies of the manifests to the engineer.

o. Contractor Responsibility for Method of Operations - (Insert company name) will comply with all environmental laws and regulations.

p. Records - (Insert company name) will maintain a copy of all manifests for three years and make them available to MDEQ upon request.

Hydrodemolition Project Checklist – see below for a sample. hydrodemolition project pH Control Plan checklist.


The contractor shall submit a hydrodemolition pH control plan for review and acceptance prior to beginning any hydrodemolition work. The following is a sample hydrodemolition pH control plan:


Equipment Description - see Section 712 of the Standard Specifications for Construction.


SSPC-SP3 Power Tool Cleaning

Removes all loose mill scale, loose rust, loose paint, and other loose detrimental foreign matter by power wire brushing, power sanding, power grinding, power tool chipping, and power tool descaling. Coat the exposed structural steel after the SSPC-SP3 cleaning with 5 to 10 mils of aluminum-filled epoxy mastic before placing concrete. For deck replacement projects, the top flanges and beam ends should be cleaned and coated in accordance with section 715 of the Standard Specifications for Construction. Exposed reinforcing steel must be blast cleaned with an abrasive blast to remove loose scale and all rust. Ensure broken, missing or reinforcement bars that have lost ¼ of their original bar diameter is supplemented with additional reinforcement. Supplemental steel reinforcement should be lapped with the existing deck steel for a distance 35 times the bar diameter, per the Section 7 of the MDOT Bridge Design Guides, or as approved by the Engineer. After the loose material and debris has been removed and the steel reinforcement has been blast cleaned, flush the patch with clean pressurized water and remove any excess or ponding water with air blasting immediately prior to placing concrete. The existing concrete surface must be surface saturated to prevent it from robbing moisture from the green patch concrete.

[top of page]


Placing,Finishing, Curing Concrete

Mix and place patching material with equipment specified in subsection 703.03.B of the Standard Specifications for Construction. The surface of the patch must be moistened with no free standing water prior to placing patching material. For LMC patches, use a stiff bristle brush to apply an initial layer of the LMC mixture onto the wetted surface. The initial layer must be applied to both the horizontal and vertical surfaces of the patch. Limit the rate of progress so the brushed material does not dry before covering with overlay material. Place the concrete, vibrate and finish with a wood float. Texture the patch to a uniformly roughened surface. Ensure immediately after final finishing of each patch, the contractor applies a layer of wet burlap, which has been soaked for at least 12 hours, to exposed concrete surfaces. Place a 4 mil thick layer of polyethylene over the burlap to preserve the moisture in the burlap. Maintain the wet cure on non-LMC patches for 5 days or until a flexural strength of 550 psi is achieved. Maintain the wet cure on LMC patches for 48 hours, followed by 48 hours of air cure. Maintain the wet cure on high early mixes (QPL mixes or Bridge Deck Surface Repair (7 Sack) for at least 24 hours. The special provision for Bridge Deck Surface Repair (7 sack) mix special provision states that a 7 day wet cure is required for this type of patch. However, if a compressive strength of 2000 psi is achieved, the patch may be opened to traffic. Typically the 2000 psi compressive strength will be gained within 24 hours allowing the wet cure to be pulled and the patch opened to traffic. For this reason, the Bridge Deck Surface Repair is often substituted for LMC or Grade D patches.

Latex Modified Concrete

Latex Modified Concrete (LMC) is typically used for shallow overlays, deck patching or substructure patching of bridge rehabilitation projects. LMC may be hand mixed using the mixture proportions provided in table 703-1 in the Standard Specifications for Construction; however LMC is typically produced in mobile latex trucks which are calibrated by MDOT Bridge Field Services (BFS) prior to commencing work. Trucks must be calibrated at the beginning of each year (typically early spring) and every 6 months during the project if necessary. It is important to note that trucks are calibrated for multiple types of LMC mixture proportions. Substructure LMC, overlay and deck patching LMC and high early (HE) LMC have different mixture proportions and require adjustment of the mobile mixing equipment prior to placement. It is the contractor’s responsibility to contact BFS and schedule a field calibration of their truck(s). BFS will provide the necessary documentation to the engineer and provide the dial information to the field staff. Subsection 703.02 Table 703-1 Structures Patching Mixtures of the Standard Specifications for Construction lists the approved mixtures for structures patching. Included in the table are Latex Modified Concrete (LMC) mixtures and non-Latex Modified mixtures, all of which only require testing of air content and slump. Table 703-1 details the required air content in the far right column and Notes (a. and b.) of Table 703-1 detail the slump requirements as follows:

  • Control water to provide a stiff, workable mixture with 1 in to 2 in slump. During hot and windy weather, the Contractor may increase slump to 3 in to 4 in, as determined by the Engineer.
  • Add water, in addition to water in latex admixture, to control slump to within 3 in to 5 in. Measure slump from 4 min to 5 min after discharge from the mixer…

Due to the high compressive strength of the mixtures listed in Table 703-1 and the limitations associated with standard compressive strength testing equipment, cylinder testing for compressive strength is not required for these mixtures. However, the following cold weather limitations for LMC do exist as described in subsection 712.03.O of the Standard Specifications for Construction: If the air temperature falls below 50 ⁰F, the Engineer may require additional curing time to ensure concrete attains a flexural strength of 550 psi. Other mixtures approved for use in bridge deck patching such as the mixture detailed in the special provision for Bridge Deck Surface Repair (7 sack) require additional testing. Strength requirements will be as specified in Table 701-1A Concrete Structure Mixtures by Slump and 701-1B Concrete Structures Mixtures by Strength of Concrete of the Standard Specifications for Construction for Grade D concrete, and includes the following:

  • The Contractor may use flexural strength to determine form removal. Use compressive strength for acceptance in other situations.

Quality control cylinders are not required for LMC and Silica Fume Modified Concrete (SFMC) used for bridge deck overlays. The contractor may be required to make beams depending on cold weather limitations, as listed in the subsection 712.03 R of the Standard Specifications for Construction. The contractor is still required to perform quality control testing for slump, air content and concrete temperature for these mixtures, however, quality control cylinders are not required from the contractor for these mixtures.


[top of page]


Mixing, Placing, Finishing, and Curing SFMC Concrete Overlays

See Section 712 of the Standard Specifications for Construction for trial batches.

Proportioning and mixing the SFMC overlay shall be by either a ready mixed or central mixed batch plant meeting the requirements of subsection 701.03. Trucks delivering SFMC to the project site must be fully discharged within one hour of charging at the plant.

One hour prior to placing the SFMC overlay, the prepared deck will be wetted with a uniform spray application of water. Water collecting in depressions will be blown out with clean, oil-free compressed air.

SFMC mixture placed in localized areas deeper than 3 inches (75 mm) is to be hand vibrated in front of the finishing machine by drawing a probe vibrator horizontally through the concrete parallel to the transverse reinforcing bars at intervals not greater than 18 inches (450 mm) on center. Should the operator have trouble locating the deep removal areas, the Contractor will devise a system for use such as a deck diagram or markings on the barriers. The Contractor will coordinate this system with the Engineer.

A continuous fog spray of water will be applied to the screeded and finished concrete to prevent net evaporation from the surface of the unhardened concrete. Fogging equipment will be capable of placing a fine mist over the concrete surface without ponding water. Fogging will continue behind the final floating operation until the wet cure system is in place and activated. Fogging shall not be used to apply water to the surface of the concrete to facilitate finishing.

The silica fume concrete overlay will be wet cured for 7 days according to Section 712 of the Standard Specifications for Construction.

[top of page]


Mixing, Placing, Finishing, and Curing Concrete Patches

See Section 712 of the Standard Specifications for Construction.

[top of page]


Substructure Repair

Areas to be patched or filled will be saw cut to a minimum edge depth of 1/2 inch (15 mm), and the concrete unsound or sound, will be removed to a minimum depth of 3 inches (75 mm). If resteel is exposed, chip 3/4 inch (20 mm) beneath the bar. Make sure the area is outlined with a saw cut to insure neat lines and no spall areas. After the concrete removal, blast clean the area to be patched. Forms must be cleaned, have a bond breaker applied, be tight and form neat lines. Place and cure patching material according to specifications.

[top of page]


MEASUREMENT AND PAYMENT

Measuring and Calibration

Prior to casting any overlay mixture, the finishing machine will be passed over the deck to check for plan thickness and the depths recorded on Form 1131 - Bridge Decks - Concrete Depth Measurements (see Figure 706-1).

Concrete Bridge Deck Overlay can be either a Silica Fume Modified Concrete or a Latex Modified Concrete.

Silica Fume Modified Concrete is required for Deep Bridge Deck Overlay Concrete.


Step
Calibrating a Hydrodemolisher
1

Find an area of good concrete approximately 30 square feet (3 m2).

2

Hydrodemolish approximately 10 square feet (1 m2).

3

Using a straightedge, set it across the area, measure to the mortar line, and adjust depth as necessary.

4

After the proper depth is obtained, the hydrodemolisher is ready for production cutting.

5

After the machine has moved approximately 20 linear feet (6 m), recheck the cut depth and make any necessary adjustments.

6

Now production can continue with spot checking the depth.

7

Record the settings (water pressure, cutting head speed, forward advancement) on the IDR for future reference.

8

During the first pass, the material will be cleaned up.

9

No runoff water will leave the deck until it has been filtered clean.

10

Allow the deck to air dry for one day before sounding the concrete for a second pass.

11

Areas of exposed resteel and deep removal should be sounded for good concrete. Where resteel is debonded, the concrete will be chipped 3/4 inch (20mm) below the steel.

12

Runoff water, filtered or unfiltered, shall not be allowed to enter storm sewers, bridge drainage downspouts or bridge approach downspouts, nor be discharged into surface water floodplains or wetlands.

[top of page]


Testing of Latex Modified Concrete (LMC)

Slump, air and yield tests will be run on all trucks the first time around. Random testing will be allowed after this. The air test will be run immediately; the slump test after four to five minutes has elapsed. Yield tests will be adjusted by opening or closing the aggregate bins accordingly. New settings will be recorded for further use. No additives can be added for high or low air. If either of these conditions exists, a reblending of the latex is necessary. Out of specification material will be rejected.

[top of page]


Testing of Silca Fume Concrete

Slump and air tests will be taken on the mixture throughout the pour.

[top of page]